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Abstract

dard micro-device in microelectromechanical system (MEMS) for many researchers to demonstrate how reduced-order dynamic macromod-

A doubly clamped microbeam actuated by electrostatic force with squeezed gas film damping is a well-known and stan-

el is an effective way to faithfully capture the device behaviors. However it still takes time to directly recompute the time-dependant nonlin-
ear terms in macromodels which are generated by a proper orthogonal decomposition { POD) method with Galerkin procedure at every time
step during the macromodel simulation. This paper proposes two methods for speeding up the computation of macromodel simulations. In
the first method, the computation speedup is achieved based on the concept of precomputation upon the basis functions are available. In the
second method, cubic splines approximation is used to interpolate the basis functions and their first and second derivatives, and spatial inte-
gration is performed by application of the Gaussian quadrature. Numerical results show both methods could enhance the efficiency of the

macromodel simulation compared with our previous computation results.
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The modeling and simulation of the microelec-
tromechanical system ( MEMS) devices are usually
presented by nonlinear partial differential equations
(PDE) due to the multiple coupled energy domains
involved in the MEMS device and the existence of in-
herent nonlinearity of electrostatic actuation forces
and the geometric nonlinearities caused by a large de-
formation. In order to perform rapid design verifica-
tion and optimization of MEMS device, it is essential
to generate low-order dynamic models that permit fast
simulation while capture most of the accuracy and
flexibility of the fully meshed finite element methods
(FEM) or finite difference methods (FDM) model
simulations. These low-order models are called
macromodels or reduced-order models.

In recent years, several approaches to generating
the macromodels for dynamic simulation of the
MEMS device have
lumped-parameter techniques[l] , linear modal analysis

techniques[z] ,

been presented, including
Arnoldi-based model reduction ap-
proachesm and etc. More recently, the macromodels
based on three proper orthogonal decomposition
(POD) methods including singular value decomposi-
tion ( SVD ), decomposition
(KLD)P! and neural networks-based generalized
Hebbian algorithm (GHA)'® have been developed. It
has been demonstrated in Refs. [4 ~ 6] how the

Karhunen-Loéve

macromodels were generated by extracting the global
basis functions from a few fully meshed model runs in
order to parameterize solutions with a far fewer de-
grees of freedom and how accurate and flexible the
macromodel simulations are. It is however found in
the real numerical experiments that much of computer
time is spent on the recomputation of the time-depen-
dant nonlinear terms at every time step during the nu-
merical integration thus results in relatively low effi-
ciency in these macromodels simulation. Two meth-
ods to speed up the computation of macromodel simu-
lation are developed in this paper to further enhance
the efficiency of macromodel simulations. In the first
method, the computation speedup is achieved based
on the precomputation concept, i. e. the nonlinear
terms are firstly expressed explicitly in the time-de-
pendant generalised modal coordinates and their coef-
ficients are then precomputed prior to numerical time
integration once the basis for macromodel is obtained.
The second method is to use cubic splines approxima-
tion to interpolate the basis functions and their first
and second derivatives and apply the Gaussian quadra-
ture to scale down the spatial integration of the
macromodel so as to improve the macromodel simula-
tion efficiency. The numerical experiments have
demonstrated that both methods could achieve suc-
cessful computation efficiency enhancement of the
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macromodel dynamic simulation.
1 The system and governing equations

In order to demonstrate the model reduction
techniques and the generation of the macromodel
based on either the Karhunen-Loéve decomposition
(KLD) or the generalized Hebbian algorithm (GHA)
neural network, a doubly clamped microbeam pulled
in by the electrostatic actuation force with squeezed
gas-film damping effect is examined. Fig. 1 shows a

cross section of this devicel”!.

Poly Si microbeam
Poly Si

N
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Fig. 1. A MEMS device.

When a voltage V is applied between the top and
bottom electrodes, the top deformable microbeam is
pulled downwards due to the electrostatic force. At
the same time, the narrow air gap between the mov-
ing microbeam and the substrate will generate back
pressure force on the microbeam due to the squeezed
gas-film damping effect. The top microbeam will be
pulled onto the bottom substrate when the applied
voltage attains the pull-in voltage. The applied volt-
age 1s sensitive to the ambient pressure of the air, and
thus this structure can be used as an accelerometer or
a pressure sensor.

Device shown in Fig. 1 is a mechanical-electro-
static-fluidic coupled domain system. In general, the
microbeam can be modeled as Bernoulli-Euler beam
with electrostatic actuation force, and the back pres-
sure force can be modeled by nonlinear Reynold’ s
squeezed gas-film damping equation to yield the fol-

lowing nonlinear PDE[!,

9'v 9%
Elaﬁ Taxz
_ ggbV? Jb v
=T 2 T O(P Pa)dy patz,(l)
V(USPVP):QIJ_M (2)

1+6K ot °
where E is the Young’s modulus; I =k3/12 is the
moment of inertia in which & is the width and 4 the
thickness of the microbeam; T is the residual stress;
p is the density; g is the air viscosity and equals 1. 82
X103 kg/(m+s); v(x,t) is the height of the mi-
crobeam above the substrate; K(x, t) = A/v is the

Knudson number in which A is the mean-free path of
the air and equals 0.064 pm; — e,bV?/(2v%) is the
electrostatic actuation force where V is the applied
voltage; € is the permittivity of free space and equals
8.854 X102 Farad/m; p(x, v, t) is the back pres-
sure force caused by the squeezed gas-film in which an
isothermal process is assumed; p, is the ambient pres-
sure and equals 1.013 X 10° Pa.

2 Model reduction techniques

There are techniques such as finite difference
methods (FDM) or finite element methods (FEM) to
convert continuous dynamic nonlinear systems with
an infinite number of degrees of freedom to discrete
finite dimensional models. But the resulting number
of degrees of freedom is usually so large that it is ex-
tremely computationally intensive and time-consum-
ing for practical use. Reduced order dynamic macro-
model is a way to convert the dynamic nonlinear sys-
tem to a model with a small number of degrees of
freedom while captures all the essential behaviors of
the original system efficiently and accurately. Two
methods based on Karhunen-Loéve decomposition and
generalized Hebbian algorithm to obtain the lower or-
der dynamic macromodels for rapid and accurate
MEMS device simulation have been developed“’ﬂ re-
cently. We briefly present the basic idea of the KL.LD
and GHA neural network and then demonstrate their
applications to the lower order macromodel generation
for dynamic nonlinear systems simulation.

2.1 Model reduction based on Karhunen-Ioéve de-
composition

The Karhunen-Loéve decomposition (KLD) is a
procedure for extracting an empirical basis for a modal
decomposition from an ensemble of signals. Assume
the signals are an ensemble of the functions u, ( x)
with n = 1,2, -, N. The objective to find a single
deterministic function ¢ (r) that is the most similar
to the members of u, (x) on average is to solve the

following integral eigenvalue problem!®’

anu,x'wI')dI' = 2$(2). (3)

We define two-point spatial correlation K ( r,
z’) as follows:
K(z,z') = E,lu,(z)u,(z)], (4)

where E, is the expected value over n. Following the

(91

method of snapshots”', we assume the eigenfunction
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is a linear combination of the snapshots u, (x),
N

$(2) = Danun(z). (5)

n=1

Substituting (5) into (3) yields a matrix eigen-
value problem that determines a set of eigenvectors &
with their associated eigenvalues A,

Ca = Aa,

Cop = ﬁ(un,uk) = ”Il\“]J.ﬂu,,(I')ukT(J:/)dI/.
(6)

Solving for Eq. (6) and substituting the eigen-
vector @ into Eq. (5), we can obtain a set of eigen-
functions $; (), the order of these eigenfunctions
$.(x), ¢2(x), -, dn(x) corresponds to the order of
the magnitude of the corresponding eigenvalues A >
Ay >+ >An. The symmetric and non-negative defi-

niteness of K(x, x”) assures that 1;,=0.

Finally, every member of the ensemble could be
reproduced by a modal decomposition with respect to
the eigenfunctions as basis

(2) = Sab(), m<N, (7
k=1

where a; are the generalised modal coordinates. Eq.
(7) is called Karhunen-Loéve decomposition. The ef-
ficiency of the KLD arises from the fact that it is opti-
mal on average in the sense that the first few m
eigenfunctions capture the most informative contents,
or more energy, of the signals than the first m func-
tions of any other basis. This energy captured by the
first m eigenfunctions is

E Ju,(x)u,(x)] = D E,(a}) = Zlk- (8)

k=1

We make use of this optimality feature of the
KLD and the Galerkin procedure employing these
eigenvectors as basis functions to generate the macro-
model so as to represent the original continuous sys-
tem with minimum number of degrees of freedom.

All the above optimality carries directly over to
the discrete form of KLD that we will apply. This is
because the application of KLD to structure analysis
typically requires an ensemble of snapshots of struc-
tural dynamical characteristics at different locations.
It is naturally a set of discrete data. For example, the
deflections of the microbeam in Fig. 1 at M location
sampled N times in a temporal space can be formed as
an ensemble of snapshots,

viz,2) = [v(ai, t), v(xa t), =, vixp, )17,
(9
where each row of v represents the history array of
the deflection of the microbeam in the co-ordinate
space v(x;, t,) = [v(a;s 1), v(ay, t3), =, v(ay,
tn)], i=1,2,-, M. The M X M correlation ma-
trix K = E[ vwT] can be then generated. With this
discrete procedure for the continuous system in the
coordinate space, the set of the eigenfunctions of Eq.
(3) is obtained as a set of vector functions or eigen-
vectors of the following correlation matrix
(K - aI)¢(x) = 0, (10)
where I is the identity matrix. From now on, we
will call the discrete form of eigenfunctions as eigen-

vectors $,(x).
2.2 Model reduction based on GHA neural network

The principal components are the most important
linear features of the random observation vectors, and
the purpose of principal component analysis (PCA) is
to identify the dependent structure behind a multi-
variate stochastic observation in order to obtain a
compact description of it. Through the PCA many
variables can be represented by a few principal com-
ponents, so the PCA can be considered as a feature
extraction technique. Performing the PCA on a set of
multivariate random data means computing the eigen-
vectors of its correlation matrix corresponding to the
largest eigenvalues, and the projection of the data
over the eigenvectors to obtain a number of principal
components. Several neural network architectures and
learning rules for performing the PCA have been pro-
posed in the scientific literature. The well-known
GHA by Sanger[lo] to extract the principal eigenvec-
tors of the correlation matrix from an ensemble of sig-
nals is adopted in this paper.

Let the inputs to a single-layer neural network be
an n-dimensional column vector x, the weights a m
X n matrix W, and the outputs an m-dimensional
column vector y = Wx with m < n. And assume
that the values of x are generated by a stationary
white random vector stochastic process with a correla-
tion matrix R = E [ xxT]. Therefore, x and y are
both time-varying, and W will be time-varying as a
result of adaptation through the training algorithm.

The GHA is given by
wy(t +1) = w,(¢) + 7(t)
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[ 505,00 = 5.0 D (D)
Eo1
j =12, (11)

where w;, is the element of the weight matrix W,

i =1,2,,m;

which is the connection strength between the jth in-
put neuron and the 7th output neuron, x; is the jth
component of the input vector x, y; the ith compo-
nent of the output vector y, and () a time-varying
learning rate parameter which satisfies

limy(z) =0 and >,p(z) = . (12)
e =0

The second term of GHA in Eq. (11) is the
Hebbian term, and the third term ensures that the al-
gorithm learns successive eigenvectors g ( x ),
qZ(I)v ”
dered by descending eigenvalues. Under condition
(11), Sanger[lo] proved a theorem stating that if the
weight matrix W is assigned random values at time
zero, then with probability 1, Eq. (11) will con-
verge to a fixed point with W approaching a matrix

‘s qn (1) of the correlation matrix R or-

whose rows are the first m eigenvectors of the n X n
input correlation matrix R of the n X 1 input vector,
ordered by decreasing eigenvalue.

The significance of the theorem is that it guaran-
tees the GHA to find the eigenvectors of the correla-
tion matrix R, equally important is the fact that
there is no need to pre-compute the correlation matrix
R . Rather, the eigenvectors of R are computed by
the algorithm directly from the input vector. This is
an important feature that results in enormous compu-
tation saving, particularly when the number of inputs
n is so large that computation and manipulation of R
are not feasible and the required number of eigenvec-
tors associated with the m largest eigenvalues of the
correlation matrix R is a small fraction of n. The
GHA takes advantage of this network structure. In
the MEMS model reduction in this paper, for exam-
ple the device shown in Fig. 1, the input vector is
one snapshot of the deflection or pressure data at one
temporal sampling. In general, the number of inputs
is large but the number of required outputs is small,
therefore, the GHA provides a practical and useful
procedure for finding required few eigenvectors
q(r).

3 Macromodel generation

In order to generate the macromodel for MEMS
dynamic simulation using the above-mentioned KL.D
or GHA techniques, we need to obtain the ensemble

of signals or snapshots from the numerical solution of
the original nonlinear dynamic system first. The
snapshots must be representative of the dynamic char-
acteristics of the system or device under considera-
tion. For the system shown in Fig. 1, the pull-in dy-
namics of the microbeam at a series of different times
is simulated using FDM for an ensemble of applied
step voltage to obtain the time-dependant microbeam
deflection v(x;, t,) and the back air pressure p (x;,
¥,» t;) ensembles as the ensemble of snapshots.

To simulate the pull-in dynamics of the mi-
crobeam using FDM, we discretize the Bernoulli-Eu-
ler beam equation (1) and Reynold equation (2) in
space to generate a (M + 1) X (N + 1) mesh with M
X N inner grids and 2M + 2N + 4 boundary grids as
shown in Fig. 2. The central difference is used to
discretize the spatial partial derivation operators in
Egs. (1) and (2), and the trapezoidal rule is adopted
to discretize the integral operator. The states of three
unknowns v(x, t), 9v{(x,t)/ot and p(x, vy, t)
are then projected onto each grid point. This dis-
cretization will transform Egs. (1) and (2) into a set
of M X N +2M nonlinear ODE. We can use the fol-
lowing state space to represent the unknowns on the
grids,

._[9vi ovmd’vy  D’um dpu_ Fpmn|’
T Vo e a2 a2 ot o |
(13)

They are integrated numerically by using Runge-
Kutta method with the following boundary conditions
v _,

v = vos 5o 0, B =0 (atx =0,!),
p:pav (at_y:(),b)s
(14)
and initial conditions
o
v = Vg, 8—;:0’ p=p, (atr=0).
(15)
After deflection and back pressure ensembles are
N+]0 1 i M M+1
N
) B
/ N
1

TR
Y ]
Inner grid point (x,.y,)

X

Fig. 2. Finite difference mesh of the microbeam.
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obtained, they are then used as the snapshots, i.e.
the ensemble of signals for the Karhunen-Loéve de-
composition or as the inputs to the GHA neural net-
work to generate the eigenvectors. The Galerkin pro-
cedure employing these eigenvectors as basis functions
is then applied to the original nonlinear governing
PDE (1) and (2) to convert them to the macromodel
with a small number of ordinary differential equations
(ODE). Because independent deflection and pressure
basis functions make the Galerkin derivation simpler
and also physically make sense of the problem, we
perform the eigenvectors extraction by either KLLD or
GHA corresponding to deflection and back pressure,
respectively .

We have proved that the eigenvectors extracted
by either KLD or GHA for the same system and the
same ensemble of signals are the same because both
techniques are used to handle the same random vector
and the same correlation matrix that is associated
with the random vector, and both techniques have
the same objective function for finding the optimal ba-
The detailed derivation can be found in
Ref.[11]. As such we denote both the eigenvectors
extracted by KLLD and GHA with respect to deflection

sis vector.

as $;(x), and those with respect to the back pres-

sure as ¢jp(1, y), respectively.

The deflection v(x, t) and pressure p{x, y, t)
can then be represented as a linear combination of the
eigenvector as follows

Za () (z) = 5, (16)
p(z,y, 1) = p, = Z

v(x,t) — vy

—

()¢ (x,5) = p,

(17
where vy is the initial gap between the deformable
microbeam and the substrate, p, the gap air ambient

pressure, a;(t) and af’ (t) are time-dependant gen-
eralised modal coordinates, I and J are the number of
basis for deflection and back pressure respectively.

Substituting Eqs. (16) and (17) into the gov-
erning Eqs. (1) and (2), and applying the Galerkin
procedure, we have

d’a]
M; d2 ZKJia?+FJ =0,

G =1,2,-,1),
(18)
s »

1
it de

i=1 =1

al + G =0,

223
(G=12,-,1), (19)
where
M, = j o($)%dz, (20)
L
224" 9%¢7 o] a¢”)
_ = —___1 ?
K = Ky f( 502 522 ax az ) 4%
(21)
E()bVZ

f(p Pa)dy)¢”dz, (22)

F] =jL

12

H;, = H; = J 1—+‘g—IZ'v¢P¢dedy, (23)

P AP b ogp

S, =S, :f {vsp(%%+%a_9s_i

A ox Ox Jdy Oy
"R S Janas, (24

_ 12g pa'v

G = f 1+ 6KP# g drdys (29

in whichf indicates the integration along the length
L

of the microbeam andJ indicates the integration over
A

the microbeam area.

The small set of coupled ODE Egs. (18) and
(19) constitutes the macromodel with global basis
functions, which is the low-order dynamic simulation
(1) and
(2). Since this dynamic macromodel of ODE is gen-
erated by Galerkin procedure employing the basis
functions extracted from the Karhunen-Loéve decom-
position or GHA network, the resulting degree of the
freedom is usually very small, just a few basis func-
tions compared to full model FEM/FDM simulation
which contains a large number of degrees of freedom.

of the original nonlinear PDE system, Egs.

4 Macromodel simulation

The macromodel of Egs. (18) and (19) is a set
of ODE which could be integrated numerically in time
by Runge-Kutta method to simulate the dynamics of
the system with the applied voltage as an input. Ex-
(20) ~

(25) for the unknown modal coordinates a; (¢) and

amining the coefficients expressed in Egs.

af(z) in Egs. (18) and (19), we can see that some
terms can be precalculated without difficulties once
the basis functions are known, for example, M, in
(20) and Kj; in (21). However, many of the terms
that associated directly to the time-dependant terms
v(x,t), dv{x,t)/3t and p(x,y,t) could not be
precalculated so easily. Since v(x,t), dv{x,z)/ot
and p(x, y, t) are time dependant, the terms F;,




224

Progress in Natural Science Vol.13 No.3 2003

H,, S, and C, in Egs. (22)~(25) must be recalcu-
lated at every time step during the numerical time in-
tegration of macromodel. Also note that the computa-
tion of these terms is performed as spatial integration
in the original Cartesian coordinate system.

The most direct method to perform this spatial
integration numerically is to use the classical formulas
for equally spaced abscissas, for example, the trape-
zoidal rule. Since we have obtained the basis functions
known on every discrete grid point as shown in Fig. 2
and we have demonstrated in Refs. [5, 6] that by do-
ing so the macromodel simulation can achieve around
11 times faster than FDM simulation when the device
shown in Fig. 1 is applied with an input step voltage
of 10.25V.

numerical integration could not achieve the best time

It is however expected that this direct

efficiency because the time-dependant terms in the
macromodel must be recomputed at every time step
and in the situation that the number of grid points for
integration is very large. In order to speed up the
macromode! simulation while keeping the accuracy,
we have developed two methods to achieve the better
time efficiency of the macromodel simulation. We will
describe these two methods in detail and demonstrate
their applications in the efficient and accurate simula-

tion of the system.
4.1 Precomputation method

(22)

~(25) since they are time-dependant. However, we

It is impractical to fully precompute Egs.

could express these equations explicitly in the time-
dependant generalised modal coordinates a; (¢) and
al (1),

the known spatial integration after the basis functions

and precompute their coefficients which are

are obtained to avoid repeatedly computing them at
every time step during numerical time integration of
macromodel so as to improve the macromodel simula-
tion efficiency. We call this procedure precomputation
method and the details are described below.

Once the number of the deflection and back pres-
sure basis functions is chosen, Hj;, S, and C; and in

macromodel of Eqs. (23 ~25) can be explicitly ex-
pressed in time-dependant modal coordinates a; (¢)

and a]p (¢) by making use of multinomial theorem,
!
(D] (1)
h;i,O + Zhﬂ kak(l)

1
— (1)

(2)
sz kak(t) + 23]1 kak(t)

H, = (26)

N-

I
+ Zzsl w ar(t)al ()

4 v k
D0 s e (@) (e ()
k1+---+kI=2
! 5) k £
20 2 e (A1) 1 (af () (1)
}e1+---+k1:21 !
6) v k 4 k
" O s (ale) e (af ()
k1+---+k1:3 ! !
: (7) A %
+ 25 reen, (@108 (] () M (1)
k1+--+k=3l
! da; (¢)
(8) Q4pit)
t 2 g 27

! da, (¢)

Cj = kZC],k T,

! !
where h](-i,)k, s:i,)k and c,,; are constants that are the

(28)

known spatial integration once the basis functions are
obtained. Special attention needs to be paid to the
term related to electrostatic force €o6V?/(2v?%) in F,
of (22) since the time-dependant term v (.x, t) is the
denominator and it will also approach zero and hence
cause the singularity at the pull-in. In order to ex-

press F, explicitly in time-dependant modal coordi-

nates a; (z) and af(t ), we propose a fourth order
polynomial function to approximate 1/v? with the
microbeam deflection range of 7/v¢€ (~0.7,0.0) ,
1 1 1 N . 3
= =5~ 5l p(8/v)t + p3(3/vy)
22 "ug(l + o/v0)? 'u(z) pal v/ vy P30/ vy

+ p2(9/v0)* + p1(5/v) + pol, (29)
where po=1.1095, p,=2.6136, p,=43.4482, p,
=117.8236, p,=127.9959.

Since the maximum stable deflection of the mi-
crobeam is about 67 % of the original gap v, in static
case!!), we assume the above lower order polynomial
function for approximation of nonlinear term 1/v? is
sufficient for the deflection range of 0.0 t0 0.7 (70 %
of the deflection). The trade off is that it could not
be used to simulate the system near pull-in area where
@/ wvq approaches — 1. Using the multinomial theo-
rem, we can then rewrite Eq. (22) as

(o)+2 > f(‘l;)e+"'+k,:k(a11}(t))k“"

}z*lk+ +k—k

J
(af(e N + D0 f el (1), (30)
(=1

.. E) . .
Similarly, the value of fj( ) is also constant in the
form of spatijal integration that can be calculated once

the basis functions are known.
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4.2 Cubic splines approximation and Gaussian
quadrature

As one may expect, in general, Gaussian

quadrature is simpler and more effective compared

with the traditional quadrature formulas for equally
spaced abscissas, e.g. trapezoidal rule. As such, one
can improve the macromodel performance and effi-
(20) ~ (25) using follow-

ing Gaussian-Legendre quadrature during the numeri-

ciency by computing Eqgs.

cal time integration of the macromodel simulation,

M, = 3 wio(# (22, (31)
o~ 32¢7(Ik) az‘i’:}(lk)
Ky —;wk[EI ox? Az’
o8, () 0%, ()
T ox ox ]’ (32)
F=>w __f:& (2,)

k
k=1 sz(xk,t) /

- Zzwsz[l?(lk’yl,t) - pa]¢;(1k),
k=1 1=1
(33)

Hi =14 6Kzzwkwl

k=1 (=

~vlxy, )8 (s y) ¥ (24s 31),  (34)

i = ZZwszv (xps ) pralzes 15 t)

k=1 1I=1

) [a¢j(1k’y1)a¢f(1k,y1)
ox ox

+ a¢f(1k’y1) a"l’f(lk’yz)J
Oy oy

1+6K22w’*w1

k=1 [=

ovlxy,
RACEAACIED) %

dv(x ,y)
CJ 1 + 6K Zzwkwl¢ (xky y[) a; L

(36)

where m and n are the numbers of integration

(35)

points, w; and w; are the associated weighting fac-
tors respectively.

In this method, once the discrete basis functions
are obtained, the natural cubic splines approximation
in which the second derivative on both boundaries of
basis function is set to be zero, is used to interpolate
the values of basis functions as well as their first and
second-order derivatives at the kth Gaussian integra-
tion point. The Gaussian quadrature will then be used

to perform the spatial integration of (31) ~ (36) dur-
ing the macrodome simulation.

5 Numerical results

In order to validate the improved macromodel
simulation efficiency enhanced by the above two
speedup methods, we examine a simulated experience
on a MEMS device as shown in Fig. 1 with physical
and geometric parameters of E = 149 GPa, T/(hb)
= -3.7GPa, p=2330kg/m’, /=610 pm, b =40
pm, h=2.2 ym and vg=2.3 um. The snapshots are
(1) and (2) by
using FDM for an ensemble of step voltages of V=
10 V and V,=16 V which are assumed to be the de-
vice operating voltage under consideration. Two sets

obtained from the solution of Egs.

of eigenvectors could then be obtained by application
of the KLD or GHA neural network to these snap-
shots, respectively, and are employed as basis func-
tions in the Galerkin procedure to the original nonlin-
ear Egs. (1) and (2) to generate the macromodel.
The two sets of the eigenvector obtained independent-
ly by KLD and GHA are the same. As the example of
the real numerical practice, Fig. 3 shows the same
first two order eigenvectors for deflection obtained by
KLD and GHA neural network,

Figs. 4 and 5 plot the same first and second order

respectively while

eigenvectors for back pressure obtained from these
two different methods. The number of the bases for
deflection and back pressure chosen in the macromod-
el for system simulation can be determined by the sys-
tem energy level captured by these eigenvectors (Eq.
(8)). It has been shown in Ref. [5] that, for mi-

crobeam deflection simulation, the first eigenvector
$7(x) can capture 99. 99% of the system energy
while it takes at least four first eigenvectors for the
back pressure $7(x,y) to capture the same level in

the back pressure simulation. As such, we choose on-

0.3
" —KLD-1 s®e
0.2 S, * aGHA-1 & °,
. . KLD-2 * .

01 » * +GHA2' *

Deflection basis

0 200 400 600
Beam length (um)
Fig. 3. Basis functions for deflection.
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ly one deflection bases and four back pressure basis in
the macromodel simulation to ensure better system
representation.

Pressure basis

Fig. 4. The first basis functions for back pressure.

Fig. 5. The second basis functions for back pressure.

We define the mean square error between the
numerical results of the deflection of center point of
microbeam obtained by macromodel (MM) and by
FDM as follows:

1<~
MSE = NZ['DMM(IU ti) - 'UFDM(Ics ti)]z,
=1
(37)

where 1. denotes the center point of the microbeam,
t, the sampled time instant, N the number of sam-
pled time series, vy, the simulation result by macro-
model and vy the FDM solution of the original
PDE (1) and (2). Based on the numerical experi-
ment, FDM solution with mesh size of 40 X 20 is able
to generate sufficient accuracy .

Fig. 6 shows the comparison of the deflection of
the center point of microbeam between the FIDM solu-
tion of the original nonlinear PDE (1) and (2) and
the macromodel simulations when the system is ap-
plied with a step input voltage of 8 V. Macromodel

simulations are carried out by numerical integration of
ODE Egs. (18) and (19) with (i) the direct classical
formulas for equally spaced abscissas, e.g. trapezoidal
rule (TR), (ii) precomputation method (speedup 1)
and (iii) cubic splines approximation and simplified
Gaussian quadrature with 7 X 7 Gaussian integration
grid size (speedup 2). It is noted that the minimum
step pull-in voltage for this device is calculated at
8.87 V by FDM code so the pull-in does not happen
when the input step voltage is less than its pull-in
voltage. The performance of the computation com-
parison shown in Table 1 indicates that the speedup

Table 1. Performance comparison between macromodel and FDM sim-
ulations for an input step voltage of 8 V, period of time from 0 to 200 ps

Method for Number of Mean square  Computer  Speedup
simulation ODE error system factor
(10~ time (s)
FDM 819 0 1048 1
Macromodel { TR) 6 2.15 145 7 (1)
Macromodel (Speedup 1) 6 2.85 1.7 616 (85)
Macromodel ( Speedup 2) 6 3.95 27.3 38 (5)

factor of the macromodels simulation with speedup 1
and speedup 2 can achieve up to 85 and 5 times, re-
spectively, compared with the macromodel simulation
with TR method which has already achieved 7 times
faster than FDM simulation, and all the macromodel
simulation errors are small compared with FDM simu-
lation. It is clear that when the applied input voltage
is less than the pull-in voltage, macromodel simula-
tion with speedup 1 or speedup 2 are very attractive as

both methods are accurate and the computation effort
required is much less than that by TR and FDM.

2.5 "
26\%%.
g
2 15
=
g
2 10 — FDM
2 s MM-TR
05 +« MM-Speedup 1
' o MM-Speedup 2
0 0.05 0.10 015 020

Time (ps)

Fig. 6. Comparison of the microbeam dynamics for an input step
voltage of V=8 V.

Fig. 7 shows the comparison of the deflection of
the center point of beam simulations when the system
is applied with a step input voltage of 10.25V which
is larger than pull-in voltage. As expected, macro-
model simulation with speedup 1 would not deliver
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accurate simulation results near pull-in area since the
1/v? approximation does not count in the pull-in
where v approaches zero. Table 2 shows that the

Table 2. Performance comparison between macromodel and FDM sim-
ulations for an input step voltage of 10.25V, period of time from 0 till

pull-in
Method for Number of Mean square  Computer  Speedup
simulation ODE error system factor
(1074 time (s)
FDM 819 (] 1952 1
Macromodel (TR} 6 2.27 182 11 (1)
Macromodel (Speedup 1) 6 27.06 1.4 1394 (130)
Macromodel (Speedup 2) 6 6.87 20.5 95 (9)

mean square error of macromodel simulation with
speedup 2 is small compared with FDM but that of
speedup 1 is large, and the computation efficiency is
much better than FDM (95 times faster) and macro-
model simulation with TR method (9 times faster).
Thus when the input voltage is beyond pull-in volt-
age, macromodel with speedup 2 simulation is a desir-
able tool for system designer.
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+ MM-Speedup |
o MM-Speedup 2

2.0

1.0

Deflection (um)

0.5

0 005 010 015 020 025
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Fig. 7. Comparison of the microbeam dynamics for an input step
voltage of V=10.25V.

6 Conclusions

Two methods to speed up the computation of
macromodels which are generated by either the KLD

or the GHA neural network-based together with
Galerkin procedure are presented in this paper. It has
demonstrated in numerical experiments that both
methods can enhance the computation efficiency of
macromodel simulation for MEMS device. Although
the precomputation method does not deliver favorite
results near pull-in, however, it can still give satisfy-
ing results for non pull-in dynamics analysis.
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